
46 The Delphi Magazine Issue 61

Caching In On
Algorithms
The first applied Algorithms Alfresco!

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfrescoI received my new credit card the

other day. The usual magnetic
stripe and hologram and entirely-
too-small space on which to
inscribe your signature and bright
glossy numbers where the gold
hasn’t rubbed off yet: all this I was
expecting. What I wasn’t was the
chip on the card: a cool new feature
from this particular credit card
company. Apparently certain
retailers have a new point-of-sale
outlet over which they merely
wave the card and the system
reads the chip on the card. Cool,
except this card is a British one
and they don’t have any of these
new readers in Colorado [Us Brits
are always well ahead of the game...
Ed]. Oh well, it makes a great con-
versation piece at parties. The first
time I showed it to my wife, she
wanted to know how it worked. I
explained that the reader emitted
radio waves that were picked up by
the chip and generated enough
energy for the chip to respond with
its inbuilt data. Like a laser scanner
in a supermarket she wanted to
know. No, I said, it uses radio
instead of light. But it works like a
laser scanner, she continued. I
should have said yes, kinda, at that
point and dropped the subject.
Essentially we had a problem of
communication: she was describ-
ing one algorithm and I was
describing another, but similar,
algorithm. Both algorithms were
applicable to the problem space,
however the ‘chip’ algorithm is
presumably harder to fake.

The one trap it is easy for me to
fall into when writing a series of
articles on algorithms and data
structures is that of enthusiasm. I
get so involved in writing about
this, that and the other thing that I
completely forget about the pro-
grammer in the street who wants
to use it. I usually rattle off a simple
application of the technique. He’s

probably wondering that all this
information is very fine and
advances the total knowledge of
the human race no end, but he’s
got an application to finish by
Friday and would like to know
whether this snazzy algorithm is
better than what he has now and, if
not, which one would be better,
thank you very much.

To be honest, there’s no way I
could possibly answer all of those
types of questions in an article.
Each particular application would
require a different mix of algo-
rithms and structures because
each application has a different
mix of features and requires a
different mix of data. What to do?

Enter Applied Algorithms
Alfresco. This is going to be an
occasional series within this
column where I discuss a particu-
lar real-world problem, go through
the design, and show how to select
a good mix of algorithms and data
structures to use in the implemen-
tation. By a process of showing
how to approach the problem, and
how to grade and select the algo-
rithms, I hope to teach you how to
solve your own problems without
having to put myself at the end of a
consulting phone.

Eventually, I’d like to hear from
you, my readers, on particular real
life problems you have to solve. If
the problem is such that I can wrap
a good article around it and intro-
duce some reusable techniques
and classes, so much the better.
Note that I cannot write your appli-
cations for you. Sorry and all that,
but that’s what you are being paid
for, not me.

The Problem
My first applied algorithms article
is to implement a file cache. Let’s
explain where I got the idea from so
you can see the problem we’re
going to solve.

A web browser uses a protocol
called HTTP to download files
from websites. These files include
HTML, images, XML and so on. It
uses these downloaded files to
build up a display on your screen,
so to the average user it doesn’t
seem as if the browser is down-
loading files, it’s displaying web
pages, by golly. To help provide a
more responsive experience, it
uses a file cache to cache all this
stuff it has downloaded from the
internet. So, for example, if a par-
ticular page has ten little right
pointing arrow images on a web
page for a bulleted list, the
browser only has to download the
image once, and can reuse the
downloaded file nine other times.
If the user moves to another page
on the same web site that also has
the little right pointing arrows,
again the browser doesn’t have to
download the image from the site
and can reuse the file it’s already
received. Each image that is
repeated on a web page or in an
entire site is likely to be small, but
adding up all the times they’re
used could amount to a sizeable
chunk of download time.

So the browser caches the files it
downloads. If it can find a particu-
lar file in the cache then it reuses it
and therefore doesn’t need to
download it again over the (poten-
tially slow) internet. The HTTP
protocol has a complex set of oper-
ations that were designed to help
caches, to know when a file has to
be downloaded or when a cached
version may be used.

Groovy, but eventually the
browser would fill up your hard
disk with files from sites you

September 2000 The Delphi Magazine 47

visited once and never went to
again. So the browser usually has
some feature whereby you define
how big the cache is allowed to
grow on your hard disk before it
starts deleting the least recently
used files. On my installation of
Netscape, for example, I’ve set my
disk cache to be 7.5Mb. Once the
cache has saved so many files that
this limit has been reached or
breached, Netscape deletes as
many files as it needs to, to bring
the total size of the cache down to
the limit again. It deletes those files
that haven’t been used recently.
Internet Explorer works in a similar
way. I’ve seen some caches that
also have a feature whereby all files
over seven days old (or whatever)
are automatically deleted on the
premise that if you don’t visit a site
weekly, you probably wouldn’t be
visiting it ever again, or at least
very infrequently.

The files the browser downloads
have names like

http://www.turbopower.com/
images/products/Systools/
Sys3HPtitle.gif

You can hardly create a file with
this name on your hard disk: Win-
dows would get very confused by
the colon and the slashes. So what
we need to do is to implement an
indexing scheme as well: index this
external name to a file name that
we actually create on the disk. For
example, this particular web file
might get associated with a file
called XFGRETSA.GIF in the cache

folder, and it would be up to
the cache to read the index when
asked for the blahblahblahblah/
Sys3HPtitle.gif file and discover
that it could read XFGRETSA.GIF
from the disk (or, better still, find it
in memory) instead of going off to
TurboPower’s site, connecting to
the web server, asking for the
file blahblahblahblah/Sys3HPtitle.
gif and receiving it.

The index must be resilient
enough to cope with stupid users
like me who go into the cache
folder and delete some of the files.
(‘Oooo, let’s see if this breaks
Netscape!’)

What else? Well, you may not
know this, but files downloaded
from a website have an expiry date
attached to them. A lot of the time
the expiry date is infinite (the file
never ‘expires’) but sometimes the
web designer will set the expiry
date so that browsers out there are
forced to download a new version
of the file from the website every
now and then. We should cater for
this in our cache as well. If there is
no expiry date, caches will usually
set it to be 24 hours after down-
load. (Please note that I’m deliber-
ately simplifying the HTTP
protocol here. The mechanism by
which a client cache decides that a
file needs downloading again is
very bizarre and if I were to
describe it all it would drown the
purpose of this article in a sea of
complexity.)

The Design
Already you can see the complexi-
ties of the problem I’ve chosen. We
can’t just pick up Knuth’s The Art of
Computer Programming, Volume 2

and find the algorithm on page 432.
We are going to have to design the
solution and work out which primi-
tive algorithms and data struc-
tures we can profitably use. There
might even be some algorithm that
we have to design from scratch.

The problem as I see it boils
down to this: design and imple-
ment a file cache that could be
used by a web browser. We have to
design an indexing scheme to asso-
ciate a web file address with a file
name on our local disk. This index-
ing scheme should cope with files
being deleted by another external
process, with different ways of
marking a cached file as being
available for deletion (download
date, expiry date, whatever). We
have to implement a scheme
whereby the cache is limited in
size and, indeed, have a facility to
clear the cache. The design must
also encompass the facility for
storing the files temporarily in
memory, again with a cache
memory limit.

What the cache shouldn’t do is
get involved in the actual mecha-
nism of downloading the files from
the website concerned. This is
functionality that goes beyond the
attributes of a cache and into the
realm of an HTTP protocol class.

Usually what I do now is to
design a class or classes that
embody the functionality I want. I
don’t get involved in algorithm
choice at this stage: it’s only by
defining the interface that it
becomes more obvious what is
needed.

The first thing to think about is
what we need to store about a
downloaded file that’s in the
cache. First, there’s the external
name, or the web name. Second
there’s the filename for the file we
have on disk. We also need to
store, at a minimum, the
timestamp for the time we down-
loaded this file, the time we last
used the file, and the timestamp
for its expiry date (we could also
store the initial creation time, the
last used time, and so on, but they
won’t help us in our quest to write
the perfect cache). When we need
to mark files for deletion (because
the cache has grown too large), we

➤ Listing 1:
The internal cache item class.

TCacheItem = class
private
FDownloadDate : TDateTime;
FExpiryDate : TDateTime;
FExternalName : string;
FInternalName : string;
FLastUsedDate : TDateTime;
FSize : longint;

protected
public
constructor Create(const aInternalName : string; const aExternalName :
string; aExpiryDate : TDateTime; aDownloadDate : TDateTime;
aSize : longint);

constructor LoadFromStream(aStream : TStream);
destructor Destroy; override;
property DownloadDate : TDateTime read FDownloadDate;
property ExpiryDate : TDateTime read FExpiryDate;
property ExternalName : string read FExternalName;
property InternalName : string read FInternalName;
property LastUsedDate : TDateTime read FLastUsedDate;
property Size : longint read FSize;

end;

48 The Delphi Magazine Issue 61

shall be looking at the expiry date
and at the last-used date. Those
files that have expired will be
deleted; those files we have used
least recently will be deleted. We
should also store the file size: this
will help us calculate the total size
of the cache, both on disk and
currently in memory.

So that’s our first class. Listing 1
has a proposed interface to this
TCacheItem class. For now all I’ve
done is indicate that the class has a
constructor and a destructor and
properties that expose the data for
each item. I’m deferring any deci-
sion to add other methods and
properties until later, once we’ve
discussed the file cache class. This
item class, by the way, is only going
to be used by the cache class; the
users of the cache class will not see
this internal item class.

The cache class itself is more
involved. It seems plain that the
cache class is going to be a list of
cached files in some form. We
won’t decide exactly what form
until we’ve done a little more
design. We should be able to add a
file to the cache, that’s obvious
enough. To do that we should
supply the external name of the
file, the contents of the file and its
expiry date. From this the Add
method should be able to calculate
the last used date (which is right
now) and the size of the file. It will
create a new file in the cache folder
(mental note: we need a Folder
property to define where this is)
whose name it will decide on and
remember. As to how we pass the
file contents to this method, I think
the easiest way would be to pro-
vide a stream of some kind holding
the contents of the file. We could
then easily copy the data to our
internal file. It would be up to the
caller to create the stream; I dare
say most often the caller would use
a buffered file stream but for
smaller files a memory stream
would suffice (the caller gets to see
how big the file is before it’s down-
load: it’s held in an HTTP header
before the data).

OK, what’s next? We should have
a method that returns whether a
given external file name is in the
cache or not. If it is in the cache,

the Get method should return a
stream with the data (this again
might be a buffered file stream, but
at this stage the cache knows the
file size so it could use a memory
stream). The caller would read the
data in this stream and then call
another method to say that the
stream was finished with (Get-
Complete), otherwise the cache
would not know when the caller
had finished with the stream. This
latter method would update the
last-used date for the cached item
and maybe also free the stream.

If the external file were not found
in the cache, or the file were
expired, the Get method would
return a nil stream and then pre-
sumably the caller would be going
out to the internet to download the
file, and then adding this data to
the cache in the manner we’ve
already described.

We should provide a Delete
method whereby we can delete a
file from the cache given its exter-
nal name. This enables the
browser to force itself to refresh a
web page and all associated files
from the web, rather than from the
cache. The final method is a Clear
method for deleting all files from
the cache. As for properties, I’ve
already mentioned the Folder
property, but we should also
have a MaxDiskSizeproperty for the
maximum size of the cache on the
disk in bytes.

The Interface
This gives me Listing 2 as the inter-
face of the cache class. Notice that
I’m deliberately ignoring all imple-
mentation issues and what goes in
the private or protected sections.
All I want to do is to nail down what
the cache looks like to the outside
world. This is an important point:

as I’ve designed it so far, the user of
the file cache class has no
knowledge of any internal informa-
tion or structures at all. He doesn’t
know what names the cache gives
files on disk (or even that the
cache uses separate files at all, for
all he knows the cache could be
using BLObs on an SQL server). He
doesn’t know the indexing scheme
used by the cache. He doesn’t
know how the cache identifies
which files are due for deletion to
bring the overall size down, or
even when this process occurs.

Because we’ve defined the inter-
face and published it, we are free
to make whatever choices we like
for the implementation. We could
implement a version of the file
cache class, and then provide a
better, more efficient, implementa-
tion in version 2. It won’t affect the
user of the class. (Of course, some-
times in the real world, we find that
we have to smudge the interface a
little to get some extra speed or
functionality out of it, but we’re
going to endeavor not to do that
here.)

The Implementation
Right. Implementation, then. Let’s
identify some processes that must
happen with our cache, drawing
up a non-exhaustive list:

1. Given an external name, we
must efficiently find the cache item
for that name, or, just as efficiently,
discover that the name is not pres-
ent. This will be used internally by
the Get and Delete methods.

2. At certain times when using
the cache we have to efficiently
identify the items whose files have
expired, so that we can delete

TaaFileCache = class
private
???

protected
???

public
constructor Create;
destructor Destroy; override;
procedure Add(const aExternalName : string; const aExpiryDate : TDateTime;
aStream : TStream);

procedure Clear;
procedure Delete(const aExternalName : string);
function Get(const aExternalName : string) : TStream;
procedure GetComplete(const aExternalName : string);
property Folder : string read FFolder write fcSetFolder;
property MaxDiskSize : integer read FMaxDiskSize write FMaxDiskSize;

end;

➤ Listing 2: The interface to the
file cache class.

September 2000 The Delphi Magazine 49

them. This would probably be used
most of all during the Add method
when the user adds a file to the
cache, since it is at that point we
have to decide if the cache is too
large, and it’s at that point that we
have to delete excess files.

3. At the same or similar times,
we have to efficiently scan through
the items by last-used date so that
we can delete the items we haven’t
used in a long time until the cache
has been brought back down to
size again. Add would call this
routine.

Now we can start to think about
algorithms and data structures.
Hooray! This is where your knowl-
edge of the possibilities will help
you out. The first process seems to
indicate using one of Delphi’s stan-
dard classes, the TStringList. This
possibility goes like this: store all
the cache item objects in a sorted
string list, with the external name
as the sort order. The string list
would be used to efficiently find a
given external name. Those of you
who’ve been reading these col-
umns for a while would recognize
this search as a binary search, an
O(log(n)) algorithm. Populating
the list would be an O(nlog(n))
process. Seems pretty good. This
implementation possibility does
not help us with processes 2 and 3,
though.

Actually, we can go one better
than this, by analyzing the situa-
tion a little further. If you read the
description of the first process
again, you’ll see that it accurately
defines the main benefit of a hash
table: a very fast O(1) search. It
seems then that a hash table imple-
mentation using the external name
as key is just what the doctor
ordered.

However, at the risk of beating
the point to death, it still doesn’t
help with the second or third pro-
cess. Being able to access a file in
the cache quickly by external name
is not going to help with determin-
ing those files past their sell-by
dates, or those that haven’t been
used in a long time. To make these
operations efficient it seems that
we would need to sort the file list
by expiry date or last-used date. Of
course, we could ignore efficiency

considerations for these opera-
tions: after all, one might think that
cleaning up the cache is an infre-
quent process at best, but in real-
ity, every time we visit a website
we’ll be getting more files to put in
the cache and therefore would
need to delete files from the cache.

It’s at this point that most people
would plump for one data struc-
ture and ignore the inefficiencies
caused by using it outside its main
purview. This is shortsighted to
say the least. What we shall do
instead is have three data struc-
tures holding this information: a
hash table for the quick access by
name, a sorted list by expiry date,
and a sorted list by last-used date.
Whenever we add or delete a
cached item, we’ll be updating all
three containers. Although we will
be doing all this extra work, we
shall still be creating a class that is
more efficient than just using a
single container and then resorting
to sequential searches for the
other processes.

But think again. We have rea-
soned that a hash table would be
better than a string list to hold the
items for fast access by external
name. Is there any other data struc-
ture that would be better than a
sorted list for holding the items
sorted by expiry date and by
last-used date? All we need to do
with the last two processes is to
identify the earliest dates. We’re
not particularly interested in iterat-
ing the items by expiry or last-used
date, we just need to efficiently
identify and remove the earliest
ones. This in fact is the definition of
a priority queue.

Recall from November 1998’s
Algorithms Alfresco that a priority
queue is a data structure with
which you can add items in any
order and remove them biggest (or
smallest) first, however we may
define ‘biggest’ or ‘smallest’. (The
name priority queue comes from its
initial purpose: retrieving items in
order of priority.) All we need to do
then is to define ‘priority’ as being
the expiry date or last-used date
and use a priority queue for each
purpose.

So our design calls for three con-
tainers. When we add a new item

we must add it to all three contain-
ers. When we delete an item we
must delete it from all three con-
tainers before freeing the item in
question. When we use an item, we
update its last-used timestamp
and this would require moving it in
the priority queue that stores the
items by last used date, but leaving
it alone in the other two contain-
ers. I’m sure you get the idea by
now.

I have some bad news and some
good news. The bad first: Delphi
doesn’t come with a hash table or
priority queue as standard. The
good news: in past issues of The
Delphi Magazine I’ve presented
implementations of the hash table
in February and March 1998, and
the priority queue in November
1998.

What else did I mention in our
functional spec that I haven’t yet
covered? The disk index. Although
we have a method of associating
an external name with a disk file,
the hash table, we still have to
make this persistent. Our file
cache wouldn’t be very popular if
it had to be regenerated from
scratch every time we used the
browser. We don’t have to get very
sophisticated here (there’s no real
point in using a database engine,
for instance). The simplest
method is merely to stream the set
of cached items to disk; for this, we
would need StoreToStream and
LoadFromStream methods for our
cache class. These methods would
call similarly named methods of
the item class.

The Reuse
At this point we can start coding.
Whenever I do this kind of thing, I
tend to gather up the primitive
classes and routines first, and then
start coding the classes that per-
tain to the particular problem at
hand. The hash table first, then.

A brief recap about hash tables
would be in order. A hash table is
an array storing items that are
uniquely identified by a key. The
key can be a string (as in our case
here) or an integer or anything you
like. When an item is added to the
hash table, the key is hashed to
produce an index into the array

50 The Delphi Magazine Issue 61

and the item is placed there. All
very simple, but the real complex-
ity comes when the element in the
array already has an item present.
This is known as a collision. What
do we do? We can’t just replace the
item with our new one: we’ll lose
the old item, which is presumably
still being used.

There are two common collision
resolution methods in general use.
The first is linear probing. In this
algorithm, we try and place the
new item in the next element. If that
one is also occupied, try the next
one, and so on, so forth. When it’s
time to find an item by its key, we
hash the key to produce an index
and look at that element. If it’s the
right one, we’re done; if not, we
start looking at subsequent ele-
ments until we either find an empty
element or we found the item for
which we were searching. If the
hash table’s load factor grows too
large (the load factor for a linear
probe hash table is the number of
items in the hash table divided by
the total number of entries or slots
in the hash table), say about 2/3,
the hash table is grown and all
items reinserted.

The second common collision
resolution method is known as
chaining. Instead of each element
in the hash table array being an
item, it is a linked list of items.
When we add an item we merely
add it onto the end (or more often
the beginning) of the linked list at
that element. The find algorithm
then reduces to hashing the key,
getting an index, and then follow-
ing the linked list at that element.

We’ll either find the item we want
or we’ll simply run out of linked
list. Again the load factor comes
into play and if it grows too large
we must grow the entire hash table
(here the load factor is calculated
in the same way and is equal to the
average length of the linked lists,
and, with string keys, we would like
the average length of each linked
list to be five or less).

Amazingly, looking back through
my articles for The Delphi Maga-
zine, I find that I’ve never imple-
mented a chained hash table (I did
use one for the LZ77 compression
method in May 1999, but it was cus-
tomized for that purpose). Since
this article is all about reuse and
using classes in general use, I’m
going to stick with the linear probe
hash table and leave the chained
hash table for another time.

As for the priority queue, we
shall need to use the more special-
ized version. Recall that the stan-
dard queue allows us to insert
items in any order and remove
them smallest (or largest) first.
Other items in the priority queue
are hidden. For our purposes,

though, we have a small problem:
every now and then we shall have
to change the last-used date for a
given item, and it is very likely that
the item for which we’re changing
the date is stuck deep inside the
priority queue. Also, we’ll be delet-
ing arbitrary items in a priority
queue (for example, the last-used
priority queue might indicate an
item to be deleted and we’ll have to
delete it from the expiry priority
queue). In January 1998’s article
on graph algorithms I presented a
version of the priority queue that
allowed you to delete and change
the ‘priority’ of a given item and to
rebalance the internal tree. We’ll
use this version, then.

The Coding
At this point, we can start writing
our code in earnest. We have
selected the ‘low-level’ containers
we shall be using and must now
weave our application-specific
code around them, binding them
to our purposes.

procedure TaaFileCache.Add(const aExternalName : string;
const aExpiryDate : TDateTime; aStream : TStream);

var
CacheItem : TCacheItem;
InternalName : string;
QualName : string;
Stream : TFileStream;

begin
{create a unique file name}
InternalName := fcGetUniqueFileName;
QualName := fcGetQualifiedFileName(InternalName);
CacheItem := nil; {create a new cache item}
try
CacheItem := TCacheItem.Create(InternalName,
aExternalName, aExpiryDate, Now, aStream.Size);

{try and add the item}
if not fcAddItem(CacheItem) then begin
{if it already exists, delete unique file we created}
DeleteFile(QualName);

end else

{otherwise copy the stream over}
Stream := TFileStream.Create(QualName,
fmOpenReadWrite);

try
Stream.CopyFrom(aStream, 0);

finally
Stream.Free;

end;
end;
{check the maximum disk usage}
if (FCurDiskSize > MaxDiskSize) then
fcCleanUp;

except
{if a problem occurred, we need to delete the cache
item and the internal file, and reraise the exception}

CacheItem.Free;
DeleteFile(QualName);
raise;

end;
end;

➤ Listing 3: Adding an item to
the cache. function TaaFileCache.fcAddItem(aCacheItem : pointer) : boolean;

var
CacheItem : TCacheItem;
Dummy : pointer;

begin
{typecast the cache item to something recognizable}
CacheItem := TCacheItem(aCacheItem);
{make sure it isn't already in the cache, if it is free the passed
object to make sure we don't have a leak}
if FItems.Find(CacheItem.ExternalName, Dummy) then begin
CacheItem.Free;
Result := false;
Exit;

end;
Result := true;
{add it to the hash table first}
FItems.Insert(CacheItem.ExternalName, CacheItem);
{add it to the expiry queue}
CacheItem.ExpiryHandle := FExpiryQueue.Add(CacheItem);
{add it to the lastused queue}
CacheItem.LastUsedHandle := FLastUsedQueue.Add(CacheItem);
{increment the disk size}
inc(FCurDiskSize, CacheItem.Size);

end;

➤ Listing 4: The real code to add
an item.

September 2000 The Delphi Magazine 51

I won’t go through each and
every method here but just pick
out the highlights. The Add method
(Listing 3) generates a new unique
file (using the Win32 GetTemp-
FileName routine) as the internal
name of the cache item, creates a
new cache item object, adds it to
the cache (using fcAddItem), and
then copies the data from the
incoming stream to the internal
file. If the disk usage has now
grown too much, the fcCleanUp
method is called to delete some old
cache items.

The fcAddItem method, then,
is the interesting one (Listing 4).
However, as you can see, it is
very simple. It first checks to see if
the item already exists, if it does
the new cache item is then
destroyed. Otherwise, the item is
added to the FItemshash table, and
is inserted into the two priority

queues, FExpiryQueue and FLast-
UsedQueue. These two return a
handle that the cache item must
take care of (it’s through this
handle that we can alter the ‘prior-
ity’ of an item in the queue or
delete an item).

The fcCleanUp method is pretty
simple too. It deletes enough cache
items to bring the disk usage down
within bounds; firstly by checking
the expiry dates, and then by
checking the last-used dates.

The Delete method called either
by fcCleanUp or the outside world
merely finds the cache item in the
hash table, checks it isn’t in use (in
other words, the user of the cache
has called Getbut not GetComplete),
and then deletes the item from the
priority queues and the hash table
and finally disposes of it.

The only real interesting code
that’s going on here (in my mind!)
is in the hash table and in the prior-
ity queue. But we’re merely reusing
those classes and they don’t enter

into this design/coding discus-
sion. For the full gory details
please check out this month’s disk:
I’ve included all the relevant units.
The simple example program
merely caches the .PAS files in the
application’s folder into C:\TEMP,
with the external name being the
fully qualified name of the .PAS file.

The Conclusion
Of course, in the real world there
might be other considerations of
which we would have to take
account. For example, it might not
make sense for the caller to gather
all the data for a downloaded file in
a stream, just so the cache can
copy that stream to a file stream.
That’s two copies of the same data.
An enhancement would be for the
caller to say ‘I’m just about to
download a file called X, give me a
stream into which I can copy the
contents.’ The downloaded file
would then only exist once on the
user’s machine. Of course, the
cache would then have to have an
AddComplete method to be called
once the file was fully downloaded
(and an AddCancel method should
the download be incomplete and
the connection broken).

To aid in making the browser
even more responsive, the file
cache could also keep files in
memory as well as on disk. To this
end, the file cache usually has
another limit: the in-memory
cache limit. My Netscape configu-
ration has this set at 1Mb, for
example.

There are many such enhance-
ments to be made to this cache
class, however I hope you got a
feel for the design decisions that
must be made in order to imple-
ment a fairly simple file cache class
and have seen how some simple
Algorithms Alfresco data structures
could be reused.

Julian Bucknall wrote this article
for the cache. He can be reached
at julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2000

procedure TaaFileCache.fcCleanUp;
var
CacheItem : TCacheItem;
StaticNow : TDateTime;

begin
StaticNow := Now;
{first check our expiry dates}
CacheItem := FExpiryQueue.Peek;
while (FCurDiskSize > MaxDiskSize) and (CacheItem <> nil) and
(CacheItem.ExpiryDate < StaticNow) do begin
Delete(CacheItem.ExternalName);
CacheItem := FExpiryQueue.Peek;

end;
{if we've reduced the disk usage enough, exit}
if (FCurDiskSize < MaxDiskSize) then
Exit;

{now start getting rid of old, not recently used stuff}
CacheItem := FLastUsedQueue.Peek;
while (FCurDiskSize > MaxDiskSize) do begin
Delete(CacheItem.ExternalName);
CacheItem := FLastUsedQueue.Peek;

end;
end;

procedure TaaFileCache.Delete(const aExternalName : string);
var
CacheItem : TCacheItem;
Handle : TaaPQHandle;

begin
{find the cache item for this external name}
if FItems.Find(aExternalName, pointer(CacheItem)) then begin
{if the cache item has a data stream, it's in use so we can't
delete it: raise an exception}
if (CacheItem.DataStream <> nil) then
raise Exception.Create('TaaFileCache.Delete: file is in use');

{delete the cache item from the two queues}
Handle := CacheItem.ExpiryHandle;
FExpiryQueue.Delete(Handle);
Handle := CacheItem.LastUsedHandle;
FLastUsedQueue.Delete(Handle);
{delete the item from the hash table}
FItems.Delete(aExternalName);
{reduce the total disk usage}
dec(FCurDiskSize, CacheItem.Size);
{free the cache item}
CacheItem.Free;

end;
end;

➤ Listing 5:
Cleaning up cached files.

➤ Listing 6: Deleting a cached file.

	The Problem
	The Design
	The Interface
	The Implementation
	The Reuse
	The Coding
	The Conclusion

